ErrorMsg.readme

ErrorMsg.readme

] COLLABORATORS
TITLE :
ErrorMsg.readme
ACTION NAME DATE SIGNATURE
WRITTEN BY January 6, 2023
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

ErrorMsg.readme

Contents

1 ErrorMsg.readme

1.1 Informations about errormsg.library L e e
1.2 Distribution and disclaimer e
1.3 Installation of the library e
14 Introduction e e e e e

1.5 ARexx features

1.6 Theinclude files e e

1.7 The glue code

1.8 ErrorComand WhatError
1.9 Sample OpenLibroutine e e
1.10 How to translate errormsg.library e

1.11 Contact me...

ErrorMsg.readme

Chapter 1

ErrorMsg.readme

1.1 Informations about errormsg.library

Object: errormsg.library

Version: 3.03

Date: Mercredi 30 Novembre 1994

Author: Frédéric Delacroix

Status: Freeware

TABLE OF CONTENTS

Distribution
Installation

Introduction
Autodocs

ARexx features

The include files

The glue code

ErrorCom and WhatError
OpenLib routine
Translation

Contact me

1.2 Distribution and disclaimer

ErrorMsg.readme 2/7

In this package, you will find version 3.03 of the
errormsg.library. I distribute it as a FREEWARE product, meaning that
anybody is allowed to copy and spread it as long as the following
conditions are met:

- All files remain unchanged. If you have comments to add, do it
in a separate file and make sure it is clear I'm not responsible for those.
Archiving is of course permitted.

- All files are distributed together. This includes the library
file itself, the glue code, include files, the autodoc files, all files in
the ErrorCom WhatError and Rexx directories, all icons, the installation
script and this file.

- You do not make commercial wusage of this library without a
written permission from myself. My address can be found at the end of this
document.

- If vyou are the author of a shareware, freeware, giftware,
charityware, etc..., you are allowed to distribute the file named
errormsg.library along with all the catalogs and the installation script.

- All programs using errormsg.library have a statement in their
documentation file, saying that errormsg.library is Copyright 1994 Frédéric
Delacroix.

Errormsg.library 1is freeware, but 1t remains copyrighted by me.
This 1s not public domain! Collections like Fish’s AmigalLib disks, CAM
disks are allowed to include errormsg.library in their libraries.

ErrorCom is FreeWare and cannot be spread independently of
errormsg.library. WhatError and its source are public domain, and so are
the examples, vyou can do whatever you want with them. The arexx script
named "ShowERM.rexx" is public domain, but "ERMID.rexx" is FreeWare.

Of course, I do not make any guarantee of any kind on the correct
working of the library or associated programs. You use it entirely at your
own risk, as although I did a lot of bug-trapping, I cannot be sure there
are no more left.

1.3 Installation of the library

errormsg.library 1is a runtime library. For it to work correctly,
it must be located in the directory that is assigned to LIBS: (usually the
Libs directory of your boot disk). As an alternative, you could also use a
program like LoadLibrary for a non-definitive installation.

As errormsg.library is localized, you must copy a few catalog files
into your LOCALE:Catalogs/<language> directory if you want it to be able to
run 1in a different language than english. You are forced to do this since
a library like this has no PROGDIR: assign to find catalogs.

For convenience, I recommend vyou install the script named
"ERMID.rexx" into your REXX: directory. Installation of "ShowERM.rexx" 1is

ErrorMsg.readme

optionnal.

All the above is accomplished by the provided installation script.
Double—-click the icon, and follow the instructions.

1.4 Introduction

All developpers know how boring it is to include in their programs
messages telling the user what went wrong on an error. This is a long and
tiresome task for the programmer, who would prefer to do more interesting
things.

Moreover, including error messages 1in the executable often
dramatically increases the size of the files, and these messages are often
in english only. So the idea of a shared library that would provide all
localized error messages the system could deliver was born. This is exacly
what errormsg.library is. It includes a function to simply get a pointer
on the message to display, and functions to display it. As of V2.0,
errormsg.library has a query function which enables it to be called from
ARexx programs.

In errormsg.library, error messages are identified by a
system/subsystem 1d (to be able to from know who the message is) and the
Code itself. Most of the functions provide tags to alter the behaviour of
the library. Check the autodoc file for more information.

1.5 ARexx features

As of V2.0, errormsg.library can be an arexx host. For this, you
must declare it with the RXLIB command from the Shell:

RXLIB errormsg.library 0 -60 2
or the AddLib () function whithin ARexx:
call addlib(’errormsg.library’,0,-60,2)

As can be noticed above, the query offset for errormsg.library is
-60. This is different from the one for amigaguide.library for example so
be careful (one mistake and the guru 1s there !:-). Also please do
explicitely request version 2 of the library so that V1 users don’t see the
guru when ARexx tries to access a non—-existing function.

There are currently 5 ARexx functions implemented; they are
directly related to the regular functions of the library. See the autodocs
for details.

The functions require some arguments, like IDCMP, which are
expected 1in numeric format. To make the writing of ARexx programs easier,
I have added a support script. It is named ERMID, and is to be called as a
function:

Number=ERMID (ID1, ID2,ID3,...) (up to 15 arguments)

ErrorMsg.readme

477

The arguments taken Dby this script are keywords that are to be
translated into a number, this number can then be used as an argument for
errormsg.library (it can be used for something else of course).

The keywords currently implemented are all system and subsystem
codes for the 1library, all memory attributes (not options) (used by the
system/subsystem ERMSYS_EXEC/ERMSUB_NoMemory) and IDCMP flags.

If several arguments are given, the resulting values are or’ed into
the global result. This will only work for the 1library flags, mem
attributes and IDCMP flags.

To have a clear idea, type this line in the shell, after having
added the library to ARexx’s environment (as described above), and the
script ERMID.rexx to your REXX: directory:

rx "say displayerrormsg(ermid(MEMF_CHIP,MEMF_PUBLIC), ermid(ERMSYS_EXEC),
ermid (ERMSUB_NoMemory),’Ha|He|Hi|Ho|Hu’,’Title’,,
ermid (IDCMP_DISKINSERTED, IDCMP_DISKREMOVED))"

(do not include the linefeeds, type all on one line). You should
then get the message "No enough CHIP memory" in a window with five gadgets,
titled "Title", that will disappear when you insert or remove a disk in any
drive.

You can then try the demo script, named ShowERM.rexx, that is quite
self-explanatory. To specify a code (for error, system or subsystem), you
can either select 1,2, or 3 and enter a number, or select 1,2 or 3, enter
an identifier string and select 4,5, or 6.

1.6 The include files

I have written the standard include files _lib.i, .i and .h for the
library, plus others for the prototypes and pragmas, basing myself on those
created by Nico Francois for his reqgtools.library. I have not been able to
test them (proto and pragmas), so if you can find any bugs, correct the
files and send them to me so I can include the good ones in the next
release.

Include files for pascal, oberon, or whatever are also welcome.

1.7 The glue code

The glue code. Well, all I have been able to do is write the
source code for the stub routines, as I do not have any tool to make
suitable libraries for a C compiler. I suggest someone assembles them into
a link 1library and sends them to me, so I can release them with the next
version. Proper credits will of course be given... Thanks!

Note: once again, I took the glue source for regtools as a reference,
thanks to Nico Frangois, author of this wonderful library.

ErrorMsg.readme

5/7

1.8 ErrorCom and WhatError

In the directory ErrorCom, vyou will find a program named
—-surprise, surprise- ErrorCom (version 1.07) . It is a commodity that will
enable vyou to see all messages known by errormsg.library, by entering the
system and subsystem codes, and the error <code 1in a (nice) gadtools
interface. You will also be able to see the effects of DisplayErrorMsgA ()
and AlertErrorMsg(). Just run the program for a demonstration.

ErrorCom recognizes two keywords, that can be entered either on the
command line for the CLI, or as tooltypes from the Workbench (note: CLI
requires quotes around the hotkey description, Workbench does not like
them) . They are CXPRI and SHOWWINKEY, respectively to set the commodities
broker priority among the broker list, and to set the hotkey that will be
used as show/hide shortcut. The default for the hotkey is "lcommand lshift
‘", the default priority is 0.

ErrorCom 1is also a localized program, you will need to copy the
required catalog files on your system disk (into the same directory as
ErrorCom, or into your LOCALE: one). You can use the provided script. I
might write a MUI version of ErrorCom soon.

WhatError 1s a simple CLI command that enables you to display on
the standard output stream (ie the CLI window) an error message with the
SYSTEM, CODE and SUBSYSTEM arguments. The source for this command is
provided.

WhatError will force the code to 0 if ERMSYS_EXEC/ERMSUB_NoLibrary
is wused (new for V3.02), ErrorCom will do so only when displaying or
alerting.

1.9 Sample OpenLib routine

As of wversion 3.02, errormsg.library includes a system/subsystem

pair named ERMSYS_EXEC/ERMSUB_NoLibrary. It is used to tell the user that
a library, device or resource has failed to open. Using a mask of flags
(two are currently available: EXECF_NOLIB_USENAME and
EXECF_NOLIB_USEVERSION) as the Code argument, you can control the verbosity
of the message produced: setting EXECF_NOLIB_USENAME will return a message
with a place (formatting code %s) for the name of the library or device,
and setting both flags (don’t use EXECF_NOLIB_USEVERSION alone) will return
a message with a place (formatting code %1d) for the version number of the
library. Resources are not opened with a version number, therefore you
should not provide a version number in an error message unless you test it
by hand (by peeking in the resource structure). Beware that resources do
not have to have a version number to work (see their documentation)!

These additionnal arguments can easily be filled with
RawDoFmt () -1like functions, including EasyRequestArgs () and
DisplayMessageA() . Moreover, 1in order to provide a fully integrated
access, the function DisplayErrorMsgA () recognizes two new tags:

EMT_LibName (ti_Data points to the 1library name) and EMT_LibVersion
(ti_Data is the version number), to provide these arguments directly.

ErrorMsg.readme 6/7

In order to make it easy to use this powerful feature, I list here
(in assembly but easily translatable to C) a routine named OpenLib () whose
job is to open the library given 1in argument and alert the user if
something goes wrong.

Openlib ; (DO, Z)Base=0OpenlLib (LibName,Version) (Al,DO0)
movem.l d3-d4/a6, - (sp)
move.l al,d3
move.l dO0,d4
move.l _ExecBase (pc),ab
jsr _LVOOpenLibrary (a6)
tst.l do
bne.s .Good
move.l #ERMSYS EXEC,dl
move.l #ERMSUB_NoLibrary,d2
move.l #EXECF_NOLIB_USENAME!EXECF_NOLIB_USEVERSION, d0
clr.l —(sp)
move.l d3,-(sp)
pea EMT_LibName
move.l d4,-(sp)
pea EMT_LibVersion
move.l sp,al
move.l _ErrorMsgBase (pc), a6
jsr _LVODisplayErrorMsgA (a6)
add.l #20,sp
moveqg #0,d0

.Good movem.l (sp)+,d3-d4/a6
rts

Of course, you must not use this routine to open errormsg.library

itself ! Instead, if errormsg.library fails to open, you should cause an
alert with DisplayAlert (), saying that errormsg.library is regquired to make
your application run. Alternately, if you don’t want to open Intuition
yourself, you could use exec’s Alert () function (with parameters

AT_Recovery!AG_OpenLib) ...

1.10 How to translate errormsg.library

Errormsg.library and ErrorCom are fully localized, meaning that,
provided that locale.library is available, and so are the catalog files,
they can be made to run in your language.

However, I do not know any language other than english and french
(I forgot almost all my school spanish). So if you want a catalog for your
language, you will have to translate the strings yourself.

To do this, Just fill in the blanks in the catalog translation
files (those files that end with .ct) with the translations of the strings
that are 1in comment. Then send me the resulting file. If all goes well,
you will soon receive the compiled catalog. This is valid for either
errormsg.library or ErrorCom.

Translations for the doc files or installation scripts are also
welcome.

ErrorMsg.readme

717

Ooops. Almost forgot: in the translation file for ErrorCom, the gadget
labels are expected to begin with the keyboard shortcut letter in upper
case (it 1is not displayed), and the character to be underlined must be
preceeded by a "_". For the gadget named "Message", provide "\x01" as the
first character (disables the keyboard shortcut).

1.11 Contact me...

I can be contacted for whatever by mail at:
Frédéric Delacroix
5 rue d’Artres

59269 QUERENAING, FRANCE.

I greet all my friends, ProMedia, and AmigaNews.

	ErrorMsg.readme
	Informations about errormsg.library
	Distribution and disclaimer
	Installation of the library
	Introduction
	ARexx features
	The include files
	The glue code
	ErrorCom and WhatError
	Sample OpenLib routine
	How to translate errormsg.library
	Contact me...

